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We consider two-dimensional dispersions of droplets of isotropic phase in a liquid with an XY-like order
parameter, tilt, nematic, and hexatic symmetries being included. Strong anchoring boundary conditions are
assumed. Textures for a single droplet and a pair of droplets are calculated and a universal droplet-droplet pair
potential is obtained. The interaction of dispersed droplets via the ordered phase is attractive at large distances
and repulsive at short distances, which results in a well defined preferred separation for two droplets and
topological stabilization of the emulsion. This interaction also drives self-assembly into chains. Preferred
separations and energy barriers to coalescence are calculated, and the effects of thermal fluctuations and film
thickness are discussed.
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I. INTRODUCTION

Emulsions are an important nonequilibrium state of bulk
matter, widely used in the industry and of intrinsic physical
interest. Although two-dimensional emulsions are less com-
mon, they may mediate certain membrane bounded pro-
cesses in living cells �1–4�, control the kinetics of phase
transitions in thin films, and shed light on the corresponding
phenomena in three dimensions.

One of the main questions in studies of emulsions from
both a theoretical and experimental point of view is stabili-
zation. Since emulsions are out of equilibrium, they tend to
phase separate. Therefore for an emulsion to be useful it has
to be stabilized by kinetic barriers to coalescence. Typical
strategies include surfactant or grafted polymer stabilization
and could involve Coulombic or steric repulsion of dispersed
droplets �5,6�. Recently there has been substantial interest in
topological stabilization, which may arise when droplets of
disordered liquid are introduced in an anisotropic host fluid
�7–25�.

Anisotropic liquids exist both in two and three dimen-
sions. Tilt and bond orientational order are quite common in
liquid monolayers �26�, and there is some evidence that hy-
drated lyotropic bilayers of DMPC �dimyristol-
phophatidylcholine, saturated fatty acids chains� have bond
orientational order as well �27,28�. Quite recently, a new
hexatic phase, with sixfold orientational order, has been dis-
covered in freestanding lyotropic thin films as few as four
bilayers thick �29�.

Langmuir-Blodgett monolayers at air-water interfaces
have long lived domains due to long-range electric dipole
interactions between lipids at the asymmetric air-water inter-
face �30�. However, these dipole interactions are much re-
duced for bilayer systems in water, and are unlikely to ac-
count for the arrested phase separation observed in, e.g., Ref.
�3,31�. Komura et al. have constructed a mean field theory
which illuminates a number of aspects of lateral phase sepa-
ration in mixtures of lipid and cholesterol in bilayers �32�.
The “lipid ordered” and gel phases are described by a simple
Ising-type order parameter without, however, explicit regard

for the orientational order that may be responsible for the
slow coalescence.

Two-dimensional topological emulsions have also been
observed experimentally in thin films of smectic-C /C� liquid
crystal �11–14�. In such systems the order parameter is the
projection of the tilted director on the plane of the film and
inclusions are typically disklike “bubbles” of less ordered
phase �nematic or cholesteric� or domains with a different
number of smectic layers. Under appropriate conditions,
these inclusions are accompanied either by a topological de-
fect in the bulk of the host fluid �11,13� or by several surface
defects �12,14�. The distortions in the texture lead to long-
range attraction and short-range repulsion between bubbles,
and they drive self-assembly into chainlike and latticelike
structures �11–14�. These phenomena have been studied
theoretically before �9,10,16,17,25�. Analytical solutions for
the texture around a single droplet have been calculated in
Refs. �9,16,25� and for the far-field interactions in Refs.
�9,16�. Textures around several inclusions with surface de-
fects have been obtained numerically by Bohley and Stan-
narius �10�. For bulk defects, short-range repulsion and sta-
bility have been discussed in Refs. �16,17�.

In this paper we discuss how orientational order and point
defects give rise to the rich behavior seen in the experiments.
We first review the basic properties of topological emulsions
in Sec. II. In the next three sections we verify, extend, and
correct the results from Refs. �9,16,17,19�. In particular, we
consider droplets of different sizes embedded in a two-
dimensional liqud crystal with arbitrary orientational order
parameter. In Sec. III, we calculate textures induced by
bubbles of disordered phase in a liquid with a generalized
XY-like order parameter �tilt, nematic, and hexatic order are
special cases; the relatively unexplored case of fourfold “tet-
ratic” order is included as well.�. In Sec. IV, we obtain an
analytical expression for far-field interactions between
bubbles mediated by the aforementioned order parameters.
We then discuss numerical computation of an effective
droplet-droplet pair potential in Sec. V and show that this
interaction leads to bubble stabilization in the presence of the
“topological quasi-long-range order” �33� characteristic of
two-dimensional �2D� systems with an XY order parameter.
In Sec. VI we use our numerical approach to address chain-
ing. Finally, in Sec. VII we discuss how our results are af-
fected by thermal fluctuations and film thickness.*papers.korolev@gmail.com
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II. TOPOLOGICAL EMULSIONS

Phenomena of interest in this paper can arise in a variety
of physical systems �3,4,11–14,27–29�. In this section we
outline a model that captures many essential features and has
a virtue of simplicity.

A natural way to create a two-dimensional emulsion is to
rapidly quench the system below a mixing-demixing transi-
tion. The defect-mediated emulsification of interest to us
here arises when the continuous phase has order parameter
with XY symmetry. The system with both mixing-demixing
and XY ordering transitions can be described with the follow-
ing coarse-grained lattice gas Hamiltonian �34�,

−
H

kBT
=

J

2 �
�i,j�

titj��i
�� j + � j

��i� + K�
�i,j�

titj − ��
j

tj , �1�

where K�0 and J�0 describe interactions, � is a chemical
potential, i and j index lattice sites, �i , j� means a sum over
nearest neighbors, ti=0 denotes a patch of disordered phase,
and ti=1 denotes an ordered phase region. The continuous
XY-like symmetry is embodied in the complex p-fold sym-
metric order parameter � j =eip�j.

At low K �high temperature� entropy dominates and the
system is mixed, while at high K �low temperature� it phase
separates. In addition to this Ising-type term the Hamiltonian
includes XY-like interactions between sites that are occupied
by the ordered phase. Here p=1, 2, and 6 corresponds to tilt,
nematic, and hexatic order parameters, respectively; tetratic
order is described by p=4. Figure 1 shows a phase diagram
obtained via real space renormalization methods for this
Hamiltonian when K=J �34�. Thermal fluctuations drive the
ordering transition for the continuous symmetry degrees of
freedom �� j	 well below the Ising-type critical point, and
also lead to the broad flat top seen in experiments �2,3� and
typical of the small Ising-type coexistence curve exponent
�=1 /8. Because thermal fluctuations are strong in two di-
mensions, the thin sliver of p-fold XY ordered regime on the
left side only exhibits “quasi-long-range order,” with alge-
braic decay of correlations in �i �33�.

Well below both phase transitions the free energy of the
ordered phase can be described by a gradient expansion in
the angle field � j. For p=1,2 we make the one elastic con-
stant approximation,

F =
g

2

 d2x����2. �2�

This representation of the low energy physics is exact for
p�2. Here g is the stiffness constant, and the angle � is the
orientational order parameter. Functional minimization of
Eq. �2� leads to a simple Euler-Lagrange equation for �,

�2� = 0. �3�

One important requirement for topological stabilization of
emulsions is the anchoring boundary energy, which depends
on the angle between the director and local normal to the
boundary of a bubble. Here we assume the limit of strong
boundary conditions, when this angle is chosen to minimize
the boundary energy �7–10,13�. Tangential and homotropic
boundary conditions are two examples when the angle is � /2
and 0, respectively. Strong anchoring implies that the order
parameter uniformly changes by 2� along a bubble perim-
eter. For simplicity we adopt homotropic boundary condi-
tions but the results are valid for all other anchoring angles,
because the textures only differ by a rotation of the order
parameter by an anchoring angle at every point in space; this
rotation does not affect the energy of the system in the one
elastic constant approximation of Eq. �2�.

Boundary conditions at the outer boundary of the emul-
sion are also very important. We assume free boundary con-
ditions, which simplify the calculations and are appropriate
when there is no anchoring at the outer boundary. In the
experiments with smectic films, the director at infinity is not
free but is usually forced to point in some particular direction
�9,11–14�. Although it would be straightforward to repeat our
calculations with these boundary conditions, the difference is
often unimportant because, when topological defects are in-
cluded, both boundary conditions lead to uniform director
field at infinity and, therefore, to the same solution up to a
rotation relative to the outer boundary. However, uniform
boundary conditions at infinity must be used if one studies
the dependence of interaction energy on the angle � between
the line connecting the droplets and the orientation of the
director at the outer boundary. The free boundary conditions
correspond to the angle � that minimizes the energy of the
system.

III. SINGLE DROPLET

First we consider a single circular droplet of isotropic
phase with radius a embedded in a two-dimensional liquid
crystal with p-fold symmetric XY order. We assume a strong
line tension preserves the circular shape. In the absence of
topological defects, the only solution satisfying Eq. �3� and
the boundary condition is �=	0, where 	0 is the polar angle
relative to the center of the droplet. Thus, from the outside,
the droplet looks like a point defect with charge +1. From
Eq. �2� we find that the free energy of this texture is propor-

FIG. 1. Phase diagram for a mixture of ordered and disordered
phases.
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tional to �g ln�L /a�, where L is the system size. However,
the free energy can be lowered significantly below this loga-
rithmic divergence if one allows for an appropriate number
of point defects, so that the net charge of the droplet and the
defects is zero.

The order parameter we are considering can be repre-
sented by an arrow with directions differing by 2� / p identi-
fied. This order parameter allows for point defects with to-
pological charge n / p, where n is an integer, which means
that the order parameter rotates by 2�n / p on any contour
surrounding the defect. To make the free energy of the sys-
tem finite in the presence of a droplet, we need the charges of
the defects to sum up to −1. Upon noting that the core energy
scales as n2 and that many defects with smaller charges
screen better than few defects with larger charges, we con-
clude that n=1 and study p defects with charge −1 / p. From
the symmetry considerations and because defects repel each
other it is clear that they must form a regular p-gon around
the droplet, at least for p of physical interest, p
6. This
behavior was also found numerically by Fukuda and
Yokoyama �19� for p=2 considered there.

To completely specify equilibrium locations of the defects
we have only to determine the distance R between the center
of the droplet and the defects. On dimensional grounds, R
=�a, where � is dimensionless. To calculate � we have to
find a solution of Eq. �3� that satisfies the boundary condition
and has appropriate singularities for the pattern of defects
specified above. This is most easily accomplished by the
method of images. The solution is

� = 2	0 −
1

p
�
i=1

p

�	i + 	i�� + const, �4�

where the �	i	 are polar angles around the defects and the
�	i�	 are polar angles around the images obtained by inver-
sion in the circle. Technical details of the derivation are dis-
cussed in Appendix A. The inverse problem of textures in-
side a circular droplet of ordered phase embedded in a
disordered isotropic phase is discussed in Appendix B.

From Eqs. �4� and �2� we obtain the free energy as a
function of R, namely,

F =
�g

p
ln� R3p+1

pap�R2p − a2p�c� + pEc, �5�

where c is the core radius and Ec is the core energy. Upon
minimization, Eq. �5� gives �with �=R /a�

� = �3p + 1

p + 1
�1/�2p�

, �6�

and a free energy that no longer diverges with the system
size L,

F =
�g

p
ln� �3p+1

p��2p − 1�
a

c
� + pEc. �7�

Our results agree with the calculation in Ref. �9� and experi-
ments by Cluzeau et al. �11�, which apply to the case p=1
and with the calculation in Ref. �16�, which apply to the case
p=2; they are also consistent with the numerical work dis-

cussed in Sec. V. In another experimental system with p=1,
a different texture has been observed �12,14�. Instead of one
topological defect in the bulk, a droplet has two and some-
times four surface defects of strength 1/2 and 1/4, respec-
tively. In the case of the one elastic constant approximation
and free boundary conditions at infinity considered here,
such defects are located equidistantly along the circle be-
cause they repel each other. The texture could be obtained by
the method discussed in Appendix A; in this case the defects
and images are located at the same points. For two half-
defects the elastic energy is decreased by 3 ln�2��g com-
pared to the texture with one defect outside the bubble, but
the anchoring energy is increased because the boundary con-
ditions must be violated around two singular points. The en-
ergy difference between the alternative textures does not de-
pend on the size of the droplet and the winning configuration
is determined by the competition between elastic and anchor-
ing energies. We assume here anchoring energies large
enough to exclude surface defects on the bubble.

In summary, we have obtained the exact texture around a
single droplet with strong anchoring boundary conditions on
the surface of the bubble and free boundary conditions at
infinity. One important conclusion is that, in addition to line
tension and bulk contributions to the droplet free energy,
there is a new size-dependent contribution to the droplet free
energy ��g / p�ln�a /c�. This additional energy will alter the
usual estimates for nucleation and growth of droplets of iso-
tropic phase in terms of bulk and surface energies.

It is also important to emphasize that the penalty for vio-
lating the strong anchoring boundary condition on the drop-
let itself, by superimposing, say, a uniform texture around the
bubble, grows linearly with a. However, the creation of sev-
eral topological defects only bears the fixed cost of the core
energies. Thus, small droplets may not be accompanied by
the defects, while large ones are.

While we have shown that a single droplet acquires com-
panion defects, demonstrating topological stabilization of
emulsions requires more. We now consider the interaction of
two such domains as a function of the center-to-center dis-
tance r between them, and show that it leads to large barriers
to coalescence.

IV. FAR-FIELD INTERACTIONS

Similar to our analysis of a single droplet, we expect to
have 2p defects with charges −1 / p to neutralize the topologi-
cal charge of two droplets with strong anchoring boundary
conditions. Unlike the single droplet case, we cannot predict
the location of the defects based only on the symmetry; we
need other methods to find equilibrium positions of the sin-
gularities for each droplet separation r to compute an effec-
tive droplet-droplet pair potential V�r�.

In the far-field limit, when the distance between the drop-
lets is much greater than their sizes, one can still assume that
the defects form a regular p-gon around each of the droplets;
the sizes of these p-gons remain unaffected, to leading order
in a /r. What one cannot neglect is the relative orientation of
the p-gons. Due to the rotational symmetry of an isolated
droplet, its energy does not depend on relative orientation of
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the p-gon and the droplet. For two droplets the symmetry is
reduced, and the interaction should set the preferred orienta-
tions of the p-gons. The geometry of the problem is summa-
rized in Fig. 2.

Thus, we have to solve Eq. �3� subject to the homotopic
boundary conditions used for a single droplet and specified
locations of the point defects. The calculation is not straight-
forward because � is defined only up to 2� / p rotations. This
leads one either to consider multivalued functions or to in-
troduce many branch cuts, both of which complicate the
problem. An alternative approach is to introduce auxiliary
single valued fields � and � such that,

�i� = �i� − ij� j� , �8�

where ij is the antisymmetric tensor in two dimensions. It is
possible to decouple the auxiliary fields by demanding that �
is constant on the surface of the droplets �the constants do
not have to be the same on different droplets�, which implies
that �� is normal to the boundaries. The energy is then
given by,

F =
g

2

 ����2d2x +

g

2

 ����2d2x , �9�

where the cross term vanishes since

−
 �ij�i�� j��d2x =
 ��ij�i� j��d2x +
 ��ijnj�i��dl .

�10�

The first term on the right-hand side is zero due to antisym-
metry of ij. The second term vanishes for a similar reason,
because we choose �� to be parallel to the outward unit
normal to the boundary n. We also assume that � and �
decay fast enough that there is no contribution at infinity.

It follows from Eq. �9� that both � and � satisfy Laplace’s
equation. One can also show that topological defects in the �
field correspond to quantized singularities in � field and that
for any texture there always exist � and �, which satisfy Eq.
�8�. The approach of dividing the gradient of the order pa-
rameter in two fields is similar to the electromagnetic anal-
ogy exploited in Ref. �9�.

To find the interaction of droplets we solve the following
set of equations:

�2� = 0, �11�

�2� =
2�

p
�
i=1

2p

��2��x − di� , �12�

where x labels points in space and di refers to the positions
of the defects. We choose boundary condition for � on the
surface of the first droplet to be,

�� · n̂ = 1/a1. �13�

This condition guarantees that the order parameter uniformly
changes along the boundary by 2�. However, the director
generally forms a nonzero angle �1 with the normal. This
discrepancy can be easily fixed by imposing a boundary con-
dition on Eq. �11� for � that effectively rotates the order
parameter to match the normal as follows:

� = − �1�r,	1,	2,a1,a2� . �14�

We impose analogous boundary conditions on the surface of
the second droplet.

The equations for � are solved exactly in Appendix C; in
the far-field limit, the � contribution to the interaction energy
�i.e., the contribution from the first term of Eq. �9�� reduces
to

V� =
�g��2 − �1�2

ln� r2

a1a2
� , �15�

where �1 and �2 are functions of r ,a1 ,a2 and positions of the
defects, which are specified by 	1 and 	2 in the far-field
limit. Equation �15� has strong 1 / ln�r� dependence, but as
we will see later one can always arrange the defects in a way
to set �1=�2 and eliminate V�.

For the � field; Eqs. �12� and �13� could be solved ap-
proximately by the method of images. The number of images
is infinite, but only a few of them contribute to the leading
order. Apart from the p images inside each droplet that we
considered in the previous section, we have to include im-
ages inside the second droplet of the whole structure in and
around the first droplet �defects, their images, and +2 charge
at the center of the first droplet; see Appendix A�, as well as
images inside the first droplet of the whole structure near the
second droplet.1 We use this solution to compute the energy,
which we then Taylor expand to the leading order in powers
of 1 /R. The result for the � part of the droplet-droplet pair
potential is

V��r,	1,	2�� = �− 1�p�A�p�g��p +
1

�p�2

�cos�p�	1 + 	2���a1
pa2

p

r2p � , �16�

where A�p� is given in Table I.
There are two important features of these far-field pair

potentials. First, for any value of p there exist angles 	1 and
	2 such that V��r ,	1 ,	2��0, and therefore V��r� can lead
to an attraction, unlike V�, which is always repulsive. Sec-

1Unlike Ref. �9�, we find that one has to consider more than 2p
images.

FIG. 2. Geometry of the problem in the far-field limit, r
�a1 ,a2. Droplets of radius a1 and a2 are surrounded by regular
p-gons of defects, and the pair potential depends only on their ori-
entations and the separation r.
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ond, there is a one-dimensional family of degenerate ener-
gies, because one can always add an arbitrary angle to 	1
and subtract it from 	2 without changing V�. Similarly, V�

depends only on the difference between �1 and �2.
To complete the analysis we only have to find �1 and �2

in terms of 	1 , 	2, and r. In principle this dependence is
given by the set of images described above but the explicit
expressions are somewhat complicated. It is, however, easy
to see that when a1=a2 and 	1=	2 mod 2� / p the contribu-
tion to the energy from the � field should be small due to
symmetry. Moreover, one can show analytically that for this
orientation of the p-gons, V� falls off at least as
r−�2p+1� / ln�r�, which is much faster than V�. Thus, for a1
=a2 we can minimize the total interaction energy V=V�

+V� by requiring that

	1 = 	2 mod�2�

p
� , �17�

	1 + 	2 =
�1 + �− 1�p��

2p
mod�2�

p
� , �18�

where Eq. �17� follows from Eq. �16�. If p=1 the solution is
	1=	2=0 or 	1=	2=� and if p is even, 	1=	2=� / �2p�
+�k / p, where k is an integer. For different size droplets Eq.
�18� still holds but Eq. �17� must be generalized to an im-
plicit equation

�1�r,a1,a2,	1,	2� = �2�r,a1,a2,	1,	2� . �19�

Generically, Eqs. �18� and �19� have a solution, which mini-
mizes both V� and V�. The large r pair potential for this
favorable relative orientation is then attractive and is given
by

V�r� = − �A�p�g��p +
1

�p�2�a1
pa2

p

r2p � . �20�

It is worth noting that V� obtained here agrees with Ref. �9�
for p=1 considered therein, but we have a different expres-
sion for V�. We think that our result is more physical because
V� is repulsive, does not depend on the system size, and
decays for large r, unlike the potential calculated in Ref. �9�.
Our result also generalizes the work of Tasinkevych, Silves-
tre, Patrício, and Telo da Gama �16�, who considered the case
of p=2, a1=a2, and 	1=	2. Since in this case V�=0, the
authors did not discuss the role of V� in pairwise interaction.
In addition, they incorrectly assumed that the texture for two

droplets is given by the superposition of two textures for the
single droplet; therefore, the pair potential in Ref. �16�. dif-
fers from ours in its dependence on �.

V. NUMERICAL CALCULATION OF PAIRWISE
INTERACTION

As the droplets get closer to each other and subleading
terms become important, we expect the interaction between
the clouds of defects to give rise to a repulsive force some-
what similar to electron mediated repulsion between atoms
of ordinary matter. To check this conjecture we must extend
our calculation to ra1 ,a2. To that end we devised an algo-
rithm of solving Eq. �12� subject to the boundary conditions
�13� and specified positions of the defects; we used Eq. �C5�
from Appendix C to account for the energy of the � field.
This procedure was carried out both by solving Laplace’s
equation on a lattice and by iterative evaluation of a large
number of images. The results of these two methods were
mutually consistent and the relative error of energy could be
made as low as 10−5. An output of one such calculation for
p=1 is shown in Fig. 3. We then used a downhill simplex
method �35� to minimize the free energy with respect to the
positions of the topological defects; different starting sim-
plexes were used to check that the algorithm converges to the
correct global minimum. The procedure was repeated for
several separations r until a reliable graph of the pair poten-
tial was obtained. This calculation was done for p
=1,2 ,4 ,6 and different ratios of a2 /a1.

A result of one such calculation for p=1, a2 /a1=1 is
shown in Fig. 4, where the inset shows locations of the de-
fects at the minimum of the pair potential. At large separa-
tions, droplets attract and V�r�=−9�g�a /r�2 in agreement
with Eq. �20�. Note, there is no logarithmic contribution
from V� because �1=�2 for the equilibrium configuration of
defects. At small separations, V�r� is repulsive and when the
droplets touch it tends to infinity, thus inhibiting coalescence.
A distinct feature of this pair potential is a minimum which
implies that at sufficiently low temperatures two droplets
come together to form a stable dimer, as shown in Fig. 3.

As we showed in the previous section, the defects for p
=1 prefer to lie on the line connecting the centers of the

TABLE I. Values of A�p� for Eq. �16�, preferred separations
rmin, and barriers to coalescence � for physically relevant values of
p and a1=a2. Values of rmin /a and � /g are accurate up to the last
digit.

p A�p� rmin /a � /g

1 2 2.878 �

2 3 2.190 1.229

4 35/2 2.167 0.996

6 154 2.11 0.77

FIG. 3. Equilibrium texture for a 2D, p=1 liquid crystal for
equally sized droplets at the preferred separation, with free bound-
ary conditions at infinity. A defect with topological charge −1 ap-
pears just to the left of each droplet. The brightness represents the
square of sine of the order parameter, which should be similar to
what one would observe with crossed polarizers.
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circles when the droplets are far apart �see the inset in Fig.
4�. From our simulation we find that this behavior persists
for all separations, r and relative droplet sizes studied a2 /a1
�we explored 0.1
a2 /a1
1�, because for this configuration
of the defects �1=�2 and V� is zero. Therefore, even when
the droplets come very close there is a defect sitting between
them, which naturally leads to a diverging pair potential as
r→ �a1+a2�. This divergence will be cut off either by the
core radius, or when our strong anchoring boundary condi-
tions are relaxed. Textures and rmin obtained here agree rea-
sonably well with measurements by Cluzeau et al. �11,13�
for a p=1 system and with simulations in Refs. �16,17� for
p=1 and p=2 systems.

For p=2, 4, and 6 the pair potential also has a minimum,
but V�r� remains finite when droplets touch. The difference
arises because there is a centrosymmetric configuration of
the defects that minimizes V� and eliminates V�. In addition,
this configuration �see the insets of Fig. 5� does not have a
defect between the droplets, the cause of the divergence for
p=1. Examples of such pair potentials are shown in Fig. 5
for p=2, 6, and a2 /a1=1.

We quantify barriers to coalescence by introducing a free
energy difference � between states when droplets touch �r
=a1+a2� and when they are at the preferred separation rmin,
which provides a lower bound on the activation barrier, and
leads to e−�/kBT-fold decrease in the rate of coalescence. It is
important to know how � depends on the ratio a2 /a1 of the
two droplet sizes to understand the dynamics of coalescence.
This dependence is summarized in Fig. 6 for p=2; we find
similar behavior for p=2,4, and 6. One can see that the more
asymmetric the size ratio the higher the barriers to coales-
cence, which implies almost equally sized droplets are more
likely to coalesce than droplets of different sizes.

For all physically relevant values of p and ratios of a2 /a1
studied, we found barriers to coalescence and a minimum of
the pair potential, which implies topological stabilization and
dimerization of isolated droplet pairs. Table I �see Sec. IV�
summarizes preferred separations and minimum barriers to
coalescence for different values of p and a1=a2.

The formation of droplet dimers has a number of common
features with the chemistry of diatomic molecules. For equal

droplet sizes the defects are divided evenly between the
droplets similarly to a nonpolar covalent bond. If the sizes
are slightly different, the defects shift toward the smaller
droplet as in a polar covalent bond. Eventually, when the
radii differ by about a factor of 2 or more, the smallest drop-
let annexes one of the defects and the bond becomes ionic
�see Fig. 7�.

Our calculations not only explain the stability of emul-
sions, but also suggest an experimental signature of topologi-

FIG. 4. Pair potential for p=1 and a1=a2. The dots on the curve
are the actual data points while the line is just a guide to the eye.
The inset shows equilibrium locations of the two defects at the
preferred separation, i.e., at the minimum of the pair potential. The
defects prefer to lie on the center to center line, as shown in the
inset, for all values of r. The behavior for other values of a2 /a1 is
qualitatively similar.

FIG. 5. Pair potentials for �a� p=2, a1=a2 and �b� p=6, a1

=a2. The dots on the curves are the actual data points while the
lines are just guides to the eye. The insets show equilibrium loca-
tions of the defects at the preferred separation, i.e., at the minimum
of the pair potential. The behavior for other values of a2 /a1 is
qualitatively similar. Note the centrosymmetric configuration of the
defects.

FIG. 6. Barriers to coalescence for p=2 as a function of the ratio
of droplet sizes ��a2 /a1�. The dots on the curve are the actual data
points while the line is just a guide to the eye. Note that ��a2 /a1�
=��a1 /a2�.
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cal emulsions. For example, hexatic order can be difficult to
detect directly, because it does not couple directly to the
polarization of light; detection via x-ray scattering experi-
ments on two-dimensional films can be challenging. In con-
trast, dimerization is observable by ordinary light micros-
copy and our theory predicts a universal equilibrium
separation that depends only on the sizes of the droplets but
not on the properties of the material. Formation of dimers
with separation that agrees with the theory presented here
�there are no adjustable parameters� would be a strong indi-
cator of the presence of p-fold order surrounding coexisting
droplets. In addition, our calculation of the pair potential
could be used to extract the stiffness constant g from experi-
mental measurements of thermal fluctuations about the pre-
ferred separation. This signature could also be important for
the order parameters �p=1 and p=2� that couple directly to
light, because precise measurements of the texture and loca-
tion of defects could be more difficult than measurements of
the separation between the droplets �13�.

VI. CHAINING

Even though understanding the interaction of two droplets
is important, real systems can be more subtle, because simple
pairwise interactions sometimes lead to complex behavior of
matter as a whole. Indeed, many experiments report self-
assembly of droplets into chains at low concentrations and
lattices at high concentrations �11–14�. Chaining could be
explained by texture-induced dipole-dipole interactions in
the presence of an in-plane aligning field due to boundary
conditions, similar to ferrofluids �5�. However, this explana-
tion seems insufficient in two ways. First, at small separa-
tions, as one might expect in chains, the interaction is no
longer dipole-dipole as we showed above. Second, the expla-
nation appeals to an aligning field or aligning boundary con-
ditions at infinity, dismissing a possibility of chaining in their
absence.

Unfortunately, our numerical method of images becomes
prohibitively complex for more than a few droplets and re-

quires free boundary conditions. In addition, for several
droplets one has to solve for � numerically. Nevertheless,
there are two important cases where the progress can be
made.

The first case is chaining for p=1, where we know from
experiments by Cluzeau et al. �11� that defects lie along the
chain between the droplets. For this configuration V� is zero
�which probably drives the chaining� and we can find dis-
tance between neighbors in a chain of equal droplets, which
is 2.89a.

The second case is chaining for p=2, where the texture
around three and four equal droplets that minimizes V� hap-
pens to set V� to zero as well. This configuration of defects is
shown in Fig. 8 and is analogous to a polymer such as poly-
ethylene in chemistry. In fact, one can view the sealing de-
fects on the ends as free radicals that facilitate the reaction of
chain polymerization. An important conclusion is that in this
case chaining is driven solely by the interaction of topologi-
cal defects—no external field is required.

VII. EFFECTS OF THERMAL FLUCTUATIONS
AND BOUNDARY CONDITIONS

It is well known that thermal fluctuations are especially
important in two dimensions. In this section we discuss how
they modify the results presented so far. In the one elastic
constant approximation, considered in this paper, the effects
of temperature depend on only one dimensionless parameter,
�=kBT /g. Even though the temperature can be varied only in
a limited range between neighboring phase transitions, in
most liquid crystals, g can be changed by about two orders of
magnitude by varying film thickness in the experiments of
Ref. �11�. In fact, gkBTcN, where Tc is the temperature of
the ordering phase transition in a single layer, and N is the
number of layers in the film �9�. Thus, one can roughly in-
terpret �−1 as N.

Even though thermal fluctuations lead to many important
effects in liquids with a continuous XY symmetry, below the
Kosterlitz-Thouless transition most of them can be absorbed
into a renormalized stiffness g that now depends not only on
temperature but also on the length scale �33�. We neglect this
dependence because it is rather weak, but we allow the de-
fect positions to fluctuate in space according to the Boltz-
mann distribution. Then we compute thermal averages of
interest either by direct numerical integration weighted by
Boltzmann factors, or by Monte Carlo simulations.

First we analyze a single droplet for p=1. Due to the
highly asymmetric shape of the potential in Fig. 4 we expect
that on average the defect is located further from the droplet
than Eq. �6� predicts. This effect is significant even for small

FIG. 7. The smaller droplet annexes a defect as the separation
between the circles decreases. Both �a� and �b� show equilibrium
configurations of the defects for two droplets with a1=2a2. In �a�
r=3.3a1, and each droplet has a companion defect, while in �b� r
=3.2a1, and both defects are located near the smaller droplet. The
figure shows annexing for p=1, but similar behavior has been ob-
served for p=2, 4, and 6.

FIG. 8. Minimal energy configuration of three equally sized
droplets p=2. The interdroplet spacing is 2.19a, which is very close
to the size of a dimer.
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values of � as shown in Fig. 9, and could be observable
experimentally.

Effects of thermal fluctuations are even more dramatic for
higher values of p. Figure 10 shows the probability density
for the separation between a defect and the droplet when p
=6; the inset shows random walk of the six defects. Similar
to the blurred electron wave function of atomic physics, to-
pological defects at high temperatures form a “defect cloud”
around the droplet rather than a simple hexagon.

For two droplets, the quantity of interest is an effective
pair potential for nonzero temperatures. By effective poten-
tial we mean thermal average of the bare pair potential with
respect to the positions of the defects. Figure 11 shows this
quantity for p=1 and �−1=4. Upon recalling that �−1N,
one can see that even for a film of only four layers thick
there is still a minimum and barriers to coalescence, which
suggests that our results are robust to thermal fluctuations. It
is also interesting that rmin increases with temperature �and
decreases with film thickness�. The trend is the opposite of
what was found experimentally in Ref. �13�, suggesting that
some other effect must account for the observations. Similar
results were obtained for p=2.

VIII. CONCLUSIONS

We have shown that two-dimensional dispersions of iso-
tropic phase in a liquid with a continuous symmetry XY-like
order parameter are topologically stable, provided there are
strong anchoring boundary conditions on the droplets. We
have calculated the texture for one and two droplets and
determined the pair potential for p=1, 2, 4, and 6. A cloud of
defects surrounding each droplet insures topological charge
neutrality and contributes an additional term to the free en-
ergy, which depends logarithmically on the size of the drop-
let. At large separations, droplets of isotropic phase attract
while at small ones they repel. The defect-mediated pair po-
tential clearly indicates kinetic barriers to coalescence and
favors dimerization. We developed a fast numerical method
for obtaining the pair potential for droplets of similar and
disparate sizes and used it to calculate activation barriers and
the sizes of dimers. The latter results could be used to test
experimentally for the presence of “hidden” order parameters
with, e.g., p=4 and p=6. We also analyzed chaining and
showed that it could be driven not only by an aligning field
due to the boundary conditions �7,8� but instead solely by the
interaction between the droplets and topological defects for
p=2. Finally, we addressed the effects of thermal fluctua-
tions on the texture around a single droplet and on the pair
potential and indicated how the preferred separation could be
affected by the thickness of the film.
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FIG. 9. Average separation between the droplet and the defect as
a function of temperature for p=1. The separation approaches a
value given by Eq. �6� as T→0.

FIG. 10. �Color online� Probability density for the separation
between a defect and the droplet for p=6. The inset shows that the
six defects execute random walks; different colors represent differ-
ent defects. The yellowish annulus around the boundary arises be-
cause random walks overlap near the droplet, where the density of
the defects is very high. The simulation was done at �−1=25 with
106 Monte Carlo steps, but only each tenth step is shown for clarity.

FIG. 11. Thermally renormalized pair potential for p=1, a1

=a2, and �−1=4. The dots on the curve are the actual data points
while the line is just a guide to the eye. Energy of the droplets is
measured in units of g. Unlike Figs. 4 and 5, we did not subtract the
energy of two isolated droplets.

K. S. KOROLEV AND DAVID R. NELSON PHYSICAL REVIEW E 77, 051702 �2008�

051702-8



APPENDIX A: ENERGY OF A SINGLE DROPLET

In this appendix we derive Eqs. �5� and �6� for the energy
and position of the satellite defects around a droplet, starting
from just before Eq. �4�. To display the solution, we first
introduce some notation. Let Ai , i=1, . . . , p be the positions
of the defects created in the liquid crystal, and Ai� , i
=1, . . . , p their images in the circle C of radius a centered at
the origin O, which represents the surface of the droplet. The
images are obtained by inversion, i.e., the image �x� ,y�� of
�x ,y� in C is given by

x� =
xa2

x2 + y2 ,

y� =
ya2

x2 + y2 . �A1�

At each position Ai we define an angular variable 	i�X�,
which is the angle between axis OAi and vector AiX�, where X
is any point in the two-dimensional space. Similarly, we de-
fine angular variables 	i� at Ai�. We also introduce 	0�X� as

the angle between axis OA1 and vector OX�. The solution in
terms of these new variables is given by

� = 2	0 −
1

p
�
i=1

p

�	i + 	i�� +
�

p
. �A2�

Equation �A2� satisfies Eq. �3� because ��x ,y�=arctan�
y−y0

x−x0
�

is a solution of Laplace’s equation for arbitrary �x0 ,y0�. It
also satisfies the strong anchoring boundary condition on the
droplet due to a simple geometrical fact �see Fig. 12�:

If C is a circle of radius a centered at point O, A is any
point outside C and A� is the image of A under inversion, and
B is any point on C, then �BOA= �BA�A− �OAB.

With this observation, we conclude that at the boundary,
	k+	k�=	0+�−2��k−1� / p. Then � at the boundary is
given by �=	0+� / p−1 / p�p�−��p−1��=	0, i.e., the
boundary conditions are satisfied.

To calculate the free energy it is advantageous to intro-
duce another field �, such that �i�=ik�k� �see Eq. �8��,
where ik is the antisymmetric tensor in two dimensions,
xx=yy =0, xy =−yx=1. It is easy to see that the free energy
in terms of the Cauchy conjugate function � has the same
functional form as Eq. �2�,

F =
g

2

 ����2d2x . �A3�

The solution in terms of � is given by

��r� = 2 ln�r� −
1

p
�
i=1

p

�ln�r − OAi
� � + ln�r − OAi�

� �� . �A4�

Upon integrating by parts in Eq. �A3�, we find

F = −
g

2



C
��� · �n̂�dl −

g

2

 ��2�d2x , �A5�

where n̂ is an outward unit normal on the circle and the
contour C includes both the circle and a boundary at infinity.
It is clear that for our solution the surface integral at infinity
vanishes.

Note that in polar coordinates around the center of the

circle �r ,	0�, ���r�= n̂ ��
�r +

�̂0

r
��
�	0

. Therefore, ���r�= n̂
r

��
�	0

−�̂0
��
�r , because by definition, �� is �� rotated by −� /2.

Since on the boundary �=	0, we have



C

��� · �n̂�dl = 

C

�d	0. �A6�

This equation can be further simplified with the help of the
identity



0

2� ln�u2 + v2 − 2uv cos 	�
ln�max��u�, �v�	�

d	 = 4� , �A7�

which leads to



C

����n̂�dl = − 2� ln�R

a
� . �A8�

To evaluate the second term in Eq. �A5� we use, �2 ln�r
−r0�=2���2��r−r0� and the fact that all defects contribute
equally due to symmetry. Thus up to core energies that de-
pend on microscopic details we find


 ��2�d2x = − 4� ln�R� +
2�

p
ln�R −

a2

R
�

+
2�

p
�
i=2

p

�ln�OAi
� − OA1

� � + ln�OAi�
� − OA1

� �� .

�A9�

We simplify this formula by taking advantage of complex

numbers: let OAi
�=Rzi and OAi�

� = a2

R zi, where zk=exp�2�i�k
−1� / p�. Then we use the following chain of identities, valid
for z1�1:

�
i=1

p

�z − zi� = zp − 1⇒ ,

�
i=2

p

�z − zi� = �
i=0

p−1

zi ⇒ ,

FIG. 12. Illustration of the geometrical fact that �BOA
= �BA�A− �OAB.
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�
i=2

p

�z1 − zi� = �
i=0

p−1

1 = p , �A10�

to sum up the terms in the previous equation, which reduces
to

−
 ��2�d2x =
�

p
ln� R2p+1

p�R2p − a2p�c� + pEc, �A11�

where we put the core energy Ec back in and introduced the
core radius c. Upon combining Eqs. �A11� and �A8�, we
obtain the free energy �5�, which upon minimization gives
Eq. �6�.

APPENDIX B: ORDERED DROPLETS
IN DISORDERED FLUID

In this appendix we briefly discuss the equilibrium con-
figuration of defects inside a droplet of anisotropic two-
dimensional liquid embedded in a disordered host fluid. As
before, we assume strong anchoring boundary conditions,
which imply that the net charge of the defects in the interior
must sum up to +1. Therefore we need p point defects with
charges 1 / p. It is natural to assume that these can be ar-
ranged around the center of the droplet either in regular
p-gon or in regular �p−1�-gon with a defect in the center. We
can then calculate preferred separation between the defects
and the center of the circle, R=�a. This can be done as in
Appendix A, and the results are given below.

Regular p-gon,

F = −
�g

p
ln� �a2p − R2p�Rp−1pc

a3p � , �B1�

which upon minimization gives

� = � p − 1

3p − 1
�1/�2p�

. �B2�

Regular �p−1�-gon �with central defect�,

F = −
�g�p − 1�

p2 ln� �a2p−2 − R2p−2�Rp�p − 1�
a3p−2 � +

�g

p
ln�a

c
� ,

�B3�

which leads to

� = � p

3p − 2
�1/�2p−2�

. �B4�

Our calculation shows that the p-gon is energetically favor-
able compared to a �p−1�-gon for all values of p. Depending
on anchoring energy, it is also possible to have surface and

virtual defects instead of topological ones, but we do not
pursue this possibility further here �see Ref. �36� for an
analysis when p=1�.

APPENDIX C: SOLUTION FOR � FIELD

In this appendix we calculate the droplet-droplet potential
contribution V�. We assume that droplets of radii a1 and a2
are located at �0,0� and �r ,0�, respectively, and that � satis-
fies Laplace’s equation everywhere in space. � is forced to
equal to −�1 and −�2 on the surface of the droplets. This
problem can be solved by taking advantage of the fact that
conformal mappings leave Laplace’s equation invariant.
Hence, we search for a conformal mapping that transforms
two circles �representing the droplet boundaries� into an an-
nular ring at the origin, where Laplace’s equation can be
solved easily. Upon passing to complex coordinates � and z,
this transformation is

� =
a1

2 − wz

z − w
, �C1�

where the real parameter w is given by

w =
r2 + a1

2 − a2
2

2r
−

��a1
2 − a2

2�2 + r2�r2 − 2�a1
2 + a2

2��
2r

.

�C2�

The outer radius of the ring is a1 and the inner radius ã is

ã =
a1

2 − w�r − a2�
r − a2 − w

. �C3�

The solution of Laplace’s equation in this annular domain is
then given by

� =
�2 ln����/a1� − �1 ln����/ã�

ln�a1/ã�
, �C4�

which can be easily expressed in terms of z= �x ,y� by invert-
ing Eq. �C1�. Now, V�= g

2�����2d2x can be calculated as
follows:

V� =
g�1

2



droplet one
�� · n̂dl −

g�2

2



droplet two
�� · n̂dl

=
g�1

2



droplet one
�2�d2x −

g�2

2



droplet two
�2�d2x

=
�g��1 − �2�2

ln�a1/ã�
. �C5�

In the limit r�a1 ,a2 this equation reduces to Eq. �15�.
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